The Absolute Configuration of the $(-)_{589}$ -[Co(NCS)₂tn₂]-[Sb((+)-tart)]•2H₂O Diastereoisomer

Keiji Matsumoto, Michitaka Yonezawa, Hisao Kuroya Hiroshi Kawaguchi and Shinichi Kawaguchi

Department of Chemistry, Faculty of Science, Osaka City University, Sugimoto-cho, Sumiyoshi-ku, Osaka (Received November 17, 1969)

It has been shown by X-ray studies that the absolute configurations of $(+)_{589}$ -[Co(CN) $_2$ en $_2$]^{+ 1)} and $(-)_{589}$ -[Co ox en $_2$]^{+ 2)} are of the Λ - and Δ - types respectively.³⁾ These results are consistent with the empirical predictions derived from CD or ORD measurements. Few investigations have, though, been made of the cobalt(III) complexes involving trimethylenediamine (=tn); with regard to the absolute configuration particularly, only that of $(-)_{589}$ -[Co tn $_3$]^{3+ 4)} has been reported. We have now determined the crystal structure of $(-)_{589}$ -[Co(NCS) $_2$ tn $_2$][Sb((+)-tart)]·2H $_2$ O as well as the absolute configuration of the complex cation.

Crystal data: orthorhombic, space group $P2_12_12$; a=12.14, b=19.51, c=9.13 Å; Z=4. Three-dimensional Fourier methods were used, the absolute configuration of the (+)-tartrate ion being referred to. The R value is 0.149 for 870 observed reflections.

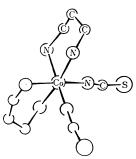
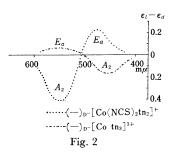
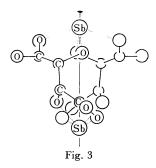




Fig. 1

Figure 1 is a perspective drawing of the complex cation, which has an approximately two-fold axis passing through the cobalt atom and bisecting the N(NCS)–Co–N(NCS) angle. Both of the two sixmembered Co-tn rings are of the chair form. The absolute configuration of $(-)_{589}$ -[Co(NCS)₂-tn₂]⁺ can be denoted as Λ , as is the case with $(-)_{589}$ -[Co tn₃]³⁺.

The sign of the E_a component of the CD peaks in the first absorption-band region is regarded as diagnostic of the absolute configuration of the trigonal cobalt(III) complex ion.⁵ The CD curve of $(-)_{589}$ -[Co \tan_2]^{3+6,7} in this region shows a weak positive E_a peak in the longer-wavelength region and a strong negative A_2 peak on the shorter-wavelength side (Fig. 2). Therefore, the assignments indicated in Fig. 2 were made for the two components in the CD diagram of $(-)_{589}$ -[Co(NCS)₂- \tan_2]⁺ obtained in the present work.

In Fig. 3 the geometry of the (+)-tartratoantimonate(III) ion is presented. A symmetric "dimerized" structure is built up of the two tetradentate tartrate ions bridging the two metal atoms lying on the two-fold axis of rotation.

¹⁾ K. Matsumoto, Y. Kushi, S. Ooi and H. Kuroya, This Bulletin, **40**, 2988 (1967).

²⁾ T. Aoki, K. Matsumoto, S. Ooi and H. Kuroya, Proceedings of the 21st Annual Meeting of the Chemical Society of Japan (Osaka, 1968), p. 1122.

³⁾ IUPAC Information Bull. No. 33, p. 68 (1968).

⁴⁾ Y. Saito, T. Nomura and F. Marumo, This Bulletin, **41**, 530 (1968).

A. J. McCaffery, S. F. Mason and R. E. Ballard, J. Chem. Soc., 1965, 2883.

⁶⁾ F. Woldbye, ORD of transition metal complexes, European Research Office, U. S. Army, Frankfurt a. M. (1959); Record of Chemical Progress, **24**, 197 (1963).

⁷⁾ P. G. Beddoe and S. F. Mason, *Inorg. Nucl. Chem. Lett.*, **4**, 433 (1968).